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Abstract
We study the amplitude distribution of irregular eigenfunctions in systems with
mixed classical phase space. For an appropriately restricted random wave
model, a theoretical prediction for the amplitude distribution is derived and
a good agreement with numerical computations for the family of limaçon
billiards is found. The natural extension of our result to more general systems,
e.g. with a potential, is also discussed.

PACS numbers: 03.65.Sq, 02.50.Ey, 05.45.Mt

1. Introduction

The semiclassical behaviour of the eigenfunctions of a quantum mechanical system strongly
depends on the ergodic properties of the underlying classical system. The semiclassical
eigenfunction hypotheses [1, 2] state that the Wigner function of a semiclassical eigenstate
is concentrated on a region in phase space explored by a typical trajectory of the classical
system. In integrable systems the phase space is foliated into invariant tori, and the Wigner
functions of the quantum mechanical eigenfunctions tend to delta functions on these tori in the
semiclassical limit [3]. On the other hand, in an ergodic system almost all trajectories cover
the energy shell uniformly, and hence the Wigner functions of the eigenstates are expected to
become a delta function on the energy shell. That this actually happens for an ergodic system
for almost all eigenstates follows from the quantum ergodicity theorem, see [4–6] and [7, 8]
for billiards (the relation of the quantum ergodicity theorem with the semiclassical behaviour
of Wigner functions is explicitly derived for Hamiltonian systems in [9]). However, a generic
system is neither integrable nor ergodic [10], but has a mixed phase space in which regular
regions (e.g. islands around stable periodic orbits) and stochastic regions coexist. Whether
these numerically observed stochastic regions are ergodic and of positive measure is an open
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question, see [11] for a review on the coexistence problem. The eigenfunctions in mixed
systems are expected to be separated into regular and irregular eigenfunctions according to an
early conjecture by Percival [12] which has been numerically confirmed for several systems
(see e.g. [13–16]). In addition, at finite energies there is a small (semiclassically vanishing)
fraction of ‘hierarchical states’ which are of intermediate nature, and localize in regions
bounded by cantori [17].

Besides the localization properties of the Wigner function, the local amplitude fluctuations
of the eigenfunctions also strongly depend on the classical system, as has been pointed out in
[1, 18]. The basic idea is that an eigenfunction can be represented locally as a superposition
of de Broglie waves with wavelength determined by the energy and momenta distributed
according to the semiclassical limit of the Wigner function. In a chaotic system one therefore
expects an isotropic distribution of the momenta. If one additionally assumes that the phases
are randomly distributed, one obtains locally a Gaussian amplitude distribution of a typical
eigenfunction in a quantum mechanical system with chaotic classical limit. For instance, in
a chaotic billiard a Gaussian amplitude distribution is expected, and this has been confirmed
by several numerical studies (see e.g. [19–24]). Predictions of the random wave model on
the behaviour of the maxima of eigenfunctions have been derived and successfully tested
in [22, 25]. In mixed systems the situation is more complicated; for some studies on matrix
elements and eigenfunctions in this case, see, for example [26–28]. In contrast, in an integrable
system the localization of the Wigner function on the invariant tori enforces a more coherent
superposition of the de Broglie waves, leading to a regular structure of the eigenfunction [1].

Our aim is to determine the amplitude distribution for irregular states in systems with
mixed classical dynamics. We assume that the motion on a stochastic region D in phase space
is ergodic and that the statistical properties of eigenfunctions can be described by a random
wave model restricted to D (see the following section for a precise definition). The derivation
shows that locally the fluctuations are Gaussian with a position-dependent variance which is
given by the classical probability density on position space defined by the ergodic density on D.
Thus the resulting amplitude distribution may be significantly different from a Gaussian. In
section 3 we compare the theoretical prediction of the restricted random wave model with
numerical computations.

2. Amplitude distribution for the restricted random wave model

In this section we consider a restricted random wave model for the two-dimensional Euclidean
quantum billiards in order to describe the statistical properties of irregular eigenfunctions in
systems with a mixed classical phase space. The quantum mechanical system is defined by
the Euclidean Laplacian on a compact domain � ⊂ R

2 with suitable boundary conditions on
the boundary ∂�. (Usually one chooses the Dirichlet conditions.) The quantum mechanical
eigenvalue problem is given by

�ψn(q) = Enψn(q) with ψn(q) = 0 for q ∈ ∂� (1)

and we are interested in the behaviour of the eigenfunctions ψn in the semiclassical limit
En → ∞.

The corresponding classical system is given by a free particle moving along straight lines
inside the billiard, making elastic reflections on the billiard boundary ∂�. The phase space is
T ∗� = R

2 × �, and the Hamiltonian is H(p, q) = |p|2. Since the Hamiltonian is scaled we
can restrict our attention to the equi-energyshell with energy E = 1,

S∗� := {(p, q) ∈ R
2 × � ; |p| = 1}. (2)
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Introducing polar coordinates (r, φ) for the momentum p, we can parametrize S∗� by
(φ, q) ∈ [0, 2π) × � where φ is the direction of the momentum. In these coordinates
the Liouville measure on S∗� is given by

dµ = dφ d2q (3)

which is invariant under the Hamiltonian flow on S∗�.
Now let D ⊂ S∗� be an open domain which is invariant under the classical flow, and on

which the flow is chaotic. The existence of such a domain where the flow is, for instance,
ergodic, is an open problem. But numerically one observes invariant domains on which the
flow is at least irregular in the sense that most orbits are unstable, and regular islands inside
this domain are very small. The uncertainty principle implies a finite quantum mechanical
resolution of phase space quantities at finite energies. Therefore at finite energies the small
islands of such an irregular domain are not resolved by the quantum system.

So we expect, in the spirit of [1], that the statistical properties of irregular eigenfunctions
associated with D can be described by those of a superposition of plane waves with wave
vectors of the same lengths and directions distributed uniformly on D. Furthermore if we
assume random phases, we arrive at the following restricted random wave model for real
valued functions, which is a superposition of plane waves of the form

ψRRWM,D(q) =
√

4π

vol(D)N

N∑
n=1

χD(̂kn, q) cos(kn· q + εn). (4)

Here χD(·) is the characteristic function of D, the phases εn are independent random variables
equidistributed on [0, 2π], and the momenta kn ∈ R

2 are independent random variables which
are equidistributed on the circle of radius

√
E. So the characteristic function χD(·) ensures

the localization on D. Furthermore, it is natural to take N ∼ √
E, the scaling of the number

of line segments of a typical Heisenberg-length orbit. The volume of D measured with the
Liouville measure (3) is denoted by vol(D). With this choice of normalization the expectation
value of the norm ‖ψRRWM,D‖ is 1.

Let us first consider the value distribution Pq(ψ) of ψRRWM,D(q) at a given point q ∈ �.
Our restricted random wave model (4) is a sum of identical independent random variables
which have zero mean and whose variance is given by

σ 2(q) = E

(
4π

vol(D)
(χD(k̂n, q) cos(kn · q + εn))

2

)
= 1

vol(D)

∫ 2π

0
χD(e(φ), q) dφ (5)

where e(φ) := (cos(φ), sin(φ)) denotes the unit vector in the φ-direction. So by the central
limit theorem we obtain forE → ∞, i.e.N → ∞, a Gaussian distribution ofψRRWM,D(q) at q,

Pq(ψ) −→
√

1

2πσ 2(q)
exp

(
− ψ2

2σ 2(q)

)
(6)

with variance given by (5). If the classical dynamics on D is ergodic, then the variance σ 2(q)
is exactly the probability density of finding the particle at the point q ∈ � if it moves on a
generic trajectory in D. So σ 2(q) is the classical probability density in position space.

By integrating equation (6) over � we obtain the complete amplitude distribution as a
mean over a family of Gaussians with variances given by (5),

PRRWM,D(ψ) = 1

vol(�)

∫
�

Pq(ψ) d2q (7)

= 1

vol(�)

∫
�

√
1

2πσ 2(q)
exp

(
− 1

2σ 2(q)
ψ2

)
d2q. (8)
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So the amplitude distribution is completely determined by the classical probabality density (5),
and it will be typically non-Gaussian if σ 2(q) is not constant.

The moments of the distribution (8) can be computed directly and turn out to be
proportional to the moments of the classical probability density σ 2(q),∫

ψ2kPRRWM,D(ψ) dψ = ρ2k
1

vol(�)

∫
�

[σ 2(q)]k dq (9)

where the factor ρ2k = (2k)!
k!2k denotes the 2kth moment of a Gaussian. The odd moments are of

course zero. Note that the second moment is always 1/vol(�), due to the normalization of ψ .
If the system is ergodic one has σ 2(q) = 1

vol(�) and we get the classical result that

PRRWM,D(ψ) is Gaussian with variance σ 2 = 1
vol(�) . However, if σ 2(q) depends on q then the

corresponding distribution can show deviations from the Gaussian distribution. In particular,
if σ 2(q) = 0 for some region �′ ⊂ �, we get a contribution vol(�′)

vol(�) δ(ψ) to the corresponding

distribution of PRRWM,D(ψ) as the integrand in (7) tends to a δ distribution as σ 2(q) → 0.
Finally, we would like to point out that the main ingredient in formula (7) is the assumption

that the local amplitude distribution of an irregular eigenfunction around a point q in position
space is Gaussian, with a variance given by the classical probability density in position space
σ 2(q), defined by the projection of the invariant measure on D in the position space. Clearly
this assumption is not restricted to billiards, but is expected to be true for arbitrary quantum
mechanical systems for which the underlying classical system contains chaotic components
in phase space. So formula (7) is expected to be valid in far more general situations, with
σ 2(q) denoting the classical probability density defined by the ergodic measure on the chaotic
component.

3. Comparison with irregular eigenfunctions

We now compare the predictions of the restricted random wave model with the results for
some numerically computed eigenfunctions. As systems to study the amplitude distribution of
irregular states in mixed systems, we have chosen the family of limaçon billiards introduced
by Robnik [29, 30] with boundary given in polar coordinates by ρ(ϕ) = 1 + ε cos(ϕ), ϕ ∈
[−π, π], with ε ∈ [0, 1] being the system parameter. We consider the case ε = 0.3, for
which the billiard has a phase space of mixed type [29], see figure 1. In [31] examples of
eigenstates far into the semiclassical regime have been studied in this system and, in particular,
the amplitude distribution has been studied numerically, but no analytical predictions have
been made.

First we have to determine the classical position space probability density σ 2(q) of the
ergodic measure on the invariant domain D. The normalized ergodic measure on D is given by

dµD(φ, q) = 1

vol(D)
χD(e(φ), q) dφ d2q

so we can express the variance σ 2(q) as a mean value

σ 2(q) =
∫
S∗�

δ(q − q′) dµD(φ
′, q′). (10)

As the motion on D is assumed to be ergodic, in order to determine σ 2(q) we could replace
the integral over S∗� by a time average over a typical trajectory of D and the δ function
by a smoothed δ function, e.g. a narrow Gaussian. However, as we will see below, the
eigenfunctions turn out not to be concentrated on the whole chaotic component, but rather on
a subset which is almost invariant in the sense that it is bounded by partial barriers in phase
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Figure 1. Plot of several stable and irregular orbits in the Poincaré section P of the limaçon billiard
for ε = 0.3. Here P is parametrized by the (rescaled) arclength coordinate s ∈ [−4, 4] along the
billiard boundary and p ∈ [−1, 1] which is the projection of the unit velocity vector on the tangent
at the point s after the reflection.

space. Since at finite energies quantum mechanics has only a finite resolution in phase space,
these partial barriers appear like real barriers. But since any classical trajectory will pass such
a barrier after a certain time, the time average is not suitable for the determination of σ 2(q) in
such a situation.

For a more direct approach to determine σ 2(q) we use the Poincaré section P =
{(s, p); s ∈ [−4, 4], p ∈ [−1, 1]}, which is parametrized by the (rescaled) arclength
coordinate s (corresponding to ϕ ∈ [−π, π]) along the boundary ∂� and the projection p
of the unit velocity vector on the tangent at the point s after the reflection. Let D ⊂ P be
the projection of the region D in the energy shell S∗� := {(p, q) ∈ R

2 × �; ‖p‖ = 1} on
the Poincaré section. This projection is defined as follows: for a point (e(φ), q) ∈ D we can
associate the trajectory which passes through q in direction e(φ), then s(φ, q) is defined as
the first intersection with the boundary ∂� when traversing the trajectory backwards from q
and p(φ, q) := e(φ)T (s(φ, q)) which is the projection of the unit velocity vector e(φ) on the
unit tangent vector T (s(φ, q)) to ∂� at s(φ, q).

For a given point q we therefore get a curve parametrized by φ

(p(φ, q), s(φ, q)) ∈ P. (11)

Since χD(e(φ), q) = χD(p(φ, q), s(φ, q)), we get

σ 2(q) = 1

vol(D)

∫ 2π

0
χD(p(φ, q), s(φ, q)) dφ (12)

and therefore we have to determine the fraction of the angular interval(s) for which the
curve (11) is in D. That is, one has to determine the angles φentry

i (q) and φexit
i (q) where the
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curve (11) enters or leaves the region D, i.e. the intersection points of (11) with the boundary
of D. In terms of these angles we obtain

σ 2(q) = 1

vol(D)

∑
i

φexit
i (q)− φ

entry
i (q) (13)

which is proportional to the fraction of directions in the ergodic component visible from the
point q.

With this classical probability density σ 2(q), one can compute the corresponding
amplitude distribution via equation (8). If σ 2(q) = 0 for some region, then the local
amplitude distribution (6) becomes a delta function, and it is necessary to consider for a
concrete comparison a binned distribution,

Pbinned(ψ,�ψ) := 1

�ψ

∫ ψ+�ψ/2

ψ−�ψ/2
P(ψ ′) dψ ′ (14)

= 1

2|�|
∫
�

[
erf

(
ψ + �ψ/2√

2σ 2(q)

)
− erf

(
ψ −�ψ/2√

2σ 2(q)

)]
d2q. (15)

We now use a Husimi Poincaré section representation of the eigenstate (see e.g.
[32, 33]) to determine the boundary of the relevant component D by a spline approximation.
The Poincaré Husimi representation of an eigenfunctionψn in a billiard is defined by projecting
the normal derivative un(s) of an eigenfunction ψn(q) at the boundary onto a coherent state
on the boundary. The coherent states, semiclassically centred in (s, p) ∈ P , are defined as

c(s,p),k(s
′) :=

(
k

σπ

)1/4 ∞∑
m=−∞

exp(ipk(s′ −mL − s)) exp

(
− k

2σ
(s′ −mL − s)2

)
(16)

where s′ ∈ [−4, 4], σ > 0 and L = 8 is the total (rescaled) length of the boundary. This
definition is just a periodized version of the standard coherent states. The Poincaré Husimi
function of a state ψn with normal derivative un(s) is then defined as

Hn(s, p) = kn

2π

1∫ 4
−4 |un(s)|2 ds

∣∣∣∣∫ 4

−4
c∗
(s,p),kn

(s′) un(s′) ds′
∣∣∣∣2 (17)

with kn = √
En; the prefactor ensures the normalization

∫∫
Hn(s, p)dp ds = 1.

An example is shown in figure 2. In (a) a high-lying eigenfunction (E = 1002 754.70 . . . ,
approximately the 130 568th state of odd symmetry) in the limaçon billiard with ε = 0.3 is
shown as density plot (black corresponding to high intensity of |ψ|2). In (b) the corresponding
Husimi representation on the Poincaré section is shown. The boundary of the irregular region
D is described by a cubic spline which is shown as a full curve. With these boundary curves
we can use (13) to compute σ 2(q), which is shown in figure 2(c). Finally, in figure 2(d) the
comparison of the amplitude distribution of ψ with the prediction of the restricted random
wave model is given. Clearly, P(ψ) is non-Gaussian, and the agreement is very good. Table 1
lists the first moments and also a very good agreement of the results using (9) and the moments
of ψ is found. Both the resulting amplitude distribution PRRWM,D and the moments turn out to
be quite robust with respect to small changes of the selection of D. Note that we have rescaled
σ 2(q) such that the variance of the distributions is 1.

Another example is shown in figure 3. The eigenfunction (E = 1003 030.75 . . . ,
approximately the 130 607th state of odd symmetry) plotted in (a) has a quite large region in the
centre where it is almost vanishing. So from this alone the amplitude distribution is expected
to show a very clear deviation from the normal distribution. Using the same procedure as
in the previous case, we determine D, compute σ 2(q) and then PRRWM(ψ). The comparison
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Figure 2. In (a) a high-lying eigenfunction (E = 1002 754.70 . . ., approximately the 130 568th
state) in the limaçon is shown as a grey scale plot (black corresponding to high intensity). In (b)
the corresponding Husimi function on the Poincaré section is shown together with the boundary
(full curves) of the region on which the eigenfunction is concentrated. In (c) a density plot of
σ 2(q), computed via equation (13), is shown. In (d ) the cumulative amplitude distribution of the
eigenfunction is compared with the prediction of the RRWM; on this scale no differences are visible.
The left inset shows P (ψ), and for the right inset a logarithmic vertical scale is used to emphasize
the tails of the distribution. For comparison the normal distribution is shown as grey curve.
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Figure 3. The same plots as in the previous figure are shown for another high-lying eigenfunction
(E = 1003 030.75 . . . , approximately the 130 607th state). In this case there is a deviation of
the amplitude distribution of the eigenfunction from the prediction of the restricted random wave
model around ψ = 0. This is because σ 2(q) = 0 in the central region, whereas the eigenfunction
does not vanish there (see the text for further discussion). For the tails of the distribution, the
agreement of the two distributions is again very good.
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Figure 4. For the three domains indicated in the inset, the local amplitude distribution is shown
(for the same state as in figure 3). The dotted curves are Gaussian fits and the agreement of
the position-dependent variance for regions A and C is very good with the theoretical prediction
(equation (5)). The non-zero width of the distribution for the region B corresponds to the widening
of the δ-contribution (see figure 3).

Table 1. Comparison of the even moments for the distributions of the eigenfunction and the RRWM
(equation (9)). The last column lists, for comparison, the moments of the normal distribution.

Example 1, figure 2 Example 2, figure 3

Moment Eigenfunction RRWM Eigenfunction RRWM Normal distribution

4 4.39 4.46 3.85 3.75 3
6 45.1 47.6 26.9 25.8 15
8 819 899 269 269 105

10 2199 2501 3774 3841 945

of the prediction with P(ψ) is shown in figure 3(d). The strongest deviation occurs forψ ≈ 0.
The peak ofPRRWM(ψ) atψ = 0 is due to the fact that σ 2(q) = 0 for the region in the centre of
the billiard. The eigenfunction, however, is not exactly zero, but shows a decay in that region
and thus still fluctuates there. This causes a broadening of the δ-contribution, which is clearly
visible in the plot of P(ψ) in figure 3(d). For |ψ| > 0.25 this region is not relevant anymore,
and the agreement of P(ψ) and PRRWM(ψ) is very good. In the right inset to figure 3(d)
the distribution is shown with a logarithmic vertical scale to illustrate the agreement of the
distributions even in the tails.

The moments, computed via equation (9), are listed in table 1. The agreement of the
moments of the eigenfunction with the prediction of the restricted random wave model is quite
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good. All moments of the two examples are larger than those of a Gaussian, corresponding to
the larger tails. Compared to the moments of the restricted random wave model, those of the
eigenfunctions tend to be smaller, in particular, for the larger moments. This is reasonable, as
an actual eigenfunction is always bounded, which reduces higher moments compared to the
result of equation (9).

Furthermore, we have tested our basic assumption (6), that the local value distribution of
a sufficiently high-lying eigenfunction is Gaussian with a variance given by the local classical
probability density associated with D, more directly. To this end we have computed the value
distribution of the eigenfunction in figure 3 for three small regions on which σ 2(q) is almost
invariant, and we therefore expect a Gaussian. The results are shown in figure 4, and a good
agreement with the prediction (6) is found. Since many fewer wavelengths are contained in
these small domains than those in �, the statistics is of course not as good as that for the full
system, but the results give strong support for a local Gaussian behaviour. The variances for
the two domains A and C coincide with the expected classical one σ 2(q). But for domain B

the observed variance is larger than σ 2(q) = 0. This corresponds to the widening of the delta
peak in figure 3, and is due to the fact that the eigenfunction cannot become exactly zero on
some open set at finite energies, but instead fluctuates around zero.

4. Summary

In this paper we have extended the random wave model for eigenfunctions from the case
of chaotic systems to the case of irregular eigenfunctions in systems with mixed phase
space. Our main result is one particular prediction of this model, namely, the amplitude
distribution (7) of irregular eigenfunctions. Numerical tests have been performed for two
high-lying eigenfunctions of the limaçon billiard with ε = 0.3, and impressive agreement,
even in the tails of the distribution, with the theoretical prediction was found.

The physical picture underlying our analysis is that the local hyperbolicity in the irregular
part of the phase space forces the eigenfunctions localizing on this part of phase space to behave
locally like a Gaussian random function with a variance given by the classical probability
density in position space defined by the uniform measure on the irregular component. By
taking the mean over all these local Gaussians with varying variance, it gives our result
for the global amplitude distribution. We have tested this intuitive picture by computing
local amplitude distributions. The agreement of these with the Gaussian prediction is very
good, giving further strong support to the picture of local Gaussian fluctuations with variance
determined by the underlying classical system. A further natural question relates to the
correlations of such eigenfunctions between different points in position space; this topic is
addressed in [34].

We should point out that in view of the complicated structure of the phase space of a
mixed system, it is quite surprising that our simple model fits so well. The only additional
ingredient which appeared in the numerical tests was that the relevant irregular domains in
phase space are only slighthy invariant, even for very high-lying eigenfunctions. A detailed
understanding of these findings poses an important challenge for future research.

Although we have restricted our study to the Euclidean billiards, the general picture
of local Gaussian fluctuations is of course not limited to these special types of systems.
We therefore expect our results to be valid for irregular eigenfunctions in arbitrary systems
(e.g. systems with potential), with σ 2(q) defined as the projection of the ergodic measure on
the irregular component to the position space.
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